
2. Encapsulation

In this chapter you will learn:

▪ What encapsulation is

▪ Why encapsulation is used

▪ How to use private and protected attributes and methods

▪ How to properly encapsulate a program

Encapsulation in object-oriented programming

As mentioned in Chapter 1, encapsulation is the idea of grouping data and subroutines to make a

program easier to work on and understand. In object-oriented programming, encapsulation is achieved

by using classes. A class should only contain the attributes and methods that it needs, and none of the

logic of one class should depend on the internal processing in another class.

Imagine a company has a system that stores various information about different employees. If the

system does not use encapsulation, any data can be used or altered in any part of the program. This is

an issue for two reasons:

1. If any errors occur it will be much harder to identify the source of the error, because it could

originate from anywhere. In a properly encapsulated program, any errors will originate

either from the part of the program that isn’t working correctly, or from an error in how

different parts of the program interact with each other.

2. It means that some parts of the system will have access to attributes and methods that they

shouldn’t have access to. In the example of a company’s employee information system, it

would make sense for the employee to be able to update some of their own records (such as

their name or bank details), but they shouldn’t have access to change other information

(such as their salary) or be able to see certain information about other employees (such as

their addresses).

Private attributes and methods

Pseudocode

class Account

 private accountPassword //This attribute is private

 ...

 public function checkPassword(password) //This method is public

 ...

endclass

class Bank

 private accounts //This attribute is private

 ...

 public procedure withdraw(number) //This method is public

 ...

Endclass

Take the above program based on Task 1. Notice how private and public keywords

are used here. If an attribute or method is private, it can only be accessed from

within the class. If an attribute or method is public, it can be used by other classes. In

Task 1, the attribute accountPassword in the Account class is made private so that

the Bank class cannot see passwords which it shouldn’t have access to. Instead, the

Bank class must use the public method checkPassword to check whether a user has

entered their password correctly. This is useful for security purposes (in a real-world

system, the more a password is shared across the system, the more vulnerable it is to

being stolen) and for encapsulating the program (the Bank class doesn’t need to

know what the password is, it only needs to be able to check that a password is

correct, so it shouldn’t have access to that data).

Pseudocode

class Account

 public profileImage

 public name

 private age

 public birthday

 public city

 private work

 ...

When an attribute from another class is needed, instead of making that attribute public, you can create

a public method that returns the value of the attribute. Similarly, to change the value of an attribute,

you can create a public method to change its value rather than directly altering it. Methods that return

the value of a private attribute are known as accessors (or 'getters'), and methods that alter the value

of a private attribute are known as mutators (or 'setters'). These may at first appear unnecessary, but

can be useful if you ever want to change the functionality of the class.

For example, imagine you have the following code:

Pseudocode

class Clock

 public currentTime //This attribute is public

 ...

endclass

class Display()

 clock = new Clock()

 ...

 public procedure showTime()

 print(clock.currentTime)//currentTime is public

 //so can be called in Display

 endprocedure

endclass

The Display class directly accesses the clock’s currentTime attribute to display the

time. This works fine, but if you wanted to make a change to how the clock’s time is

displayed (e.g. by making it a 12-hour clock instead of a 24-hour clock, or changing

whether seconds or milliseconds are displayed) and the Display class referred to

currentTime in multiple places, then formatting or other checks would need to be

added in multiple places throughout the Display class, which could mean changing

a lot of code. The program could be instead be written as:

Pseudocode

class Clock

 private currentTime //currentTime is made private

 ...

 public function getTime() //This public method gives access to currentTime

 return this.currentTime

 endfunction

endclass

class Display()

 clock = new Clock()

 ...

 public procedure showTime()

 print(clock.getTime()) //The public method is called in Display

 endprocedure

endclass

With this version of the program, the change could be made to the getTime

accessor so that the Display class does not need to be updated. Accessors and

mutators should not just be used to make a private attribute public, but to hide

information from other classes or limit the ability of other classes to alter the attribute.

Python Note:

In Python, there are no ‘private’ or ‘public’ keywords; in fact, all methods and attributes are public in

Python. However, if the name of an attribute or method begins with a double underscore, it cannot be

accessed as easily. So, for the class:

class Class:

 def __init__(self, publicAttribute, privateAttribute):

 self.publicAttribute = publicAttribute

 self.__privateAttribute = privateAttribute

If you tried to access the attributes from outside of the class:

class = Class("Public", "Private")

print(class.publicAttribute)

print(class.__privateAttribute)

The program would print the value of class.publicAttribute (‘Public’) but throw an error when it tries

to get the value of class.__privateAttribute. The ‘__’ doesn’t make __privateAttribute private, but

instead changes the name of the attribute when it is called outside of the class. So:

print(class._Class__privateAttribute)

Would print the value of class.__privateAttribute (‘Private’). While these values can still technically

be accessed from outside of the class in which they are defined, you may treat any attributes or

methods that begin with a double underscore as private.

Questions

Q1 Define the term encapsulation. (1 mark)

Q2 Explain the difference between a private attribute or method and a public attribute or

method. (2 marks)

Q3 Explain one reason why an attribute may be made private. (1 mark)

Q4 Define the terms accessor and mutator. (2 marks)

Q5 Identify when accessors and mutators should be used. (2 marks)

Q6 Explain why you might make an attribute public instead of using accessors and

mutators. (2 marks)

