
Introduction to object-oriented programming

There are many different programming styles that can be used to create computer programs. One of

these styles (known as programming paradigms) that you are likely to be familiar with is

procedural programming. In procedural programming, every variable, constant and subroutine is

defined separately, and have no inherent relationships between each other.

Another commonly used programming paradigm is object-oriented programming. Object-oriented

programs define separate objects that have their own associated values and subroutines. This means

that values and subroutines can be easily grouped together in a logical way. Consider this interactive

map application:

In an object-oriented program, each location pin would be defined as a different object. Each pin

object would have its own associated values, such as its name, its location and what it is marking (e.g.

a train station or a restaurant). Each pin object would also have some associated subroutines, such as

bringing up a list of more detailed information if the pin is clicked, or allowing for the pin’s

information to be updated.

Object-oriented programming is primarily used because of the advantages of three of its core concepts

(each explained fully in later chapters):

▪ encapsulation, which allows different parts of the program to be separated to make them easier to

understand and work on

▪ inheritance, which allows different objects with slight differences to still share the same core code

▪ polymorphism, which allows subroutines to be flexible depending on what object is using the

subroutine and what data is passed to it.

Objects and classes

As object-oriented programs can have many different objects, many of which share similar features,

code does not need to be written to define the properties of each individual object. Instead, a

framework for a type of object (known as a class) is created. For example, the Pin class may look like

this:

Pseudocode

class Pin

 private name //Data belonging to each Pin object

 private location

 private markerType

 public procedure new(pinName, pinLocation, pinMarker)

 this.name = pinName //Method to create a new Pin object

 this.location = pinLocation

 this.markerType = pinMarker

 endprocedure

 ...

endclass

The keyword 'this' is used by an object to refer to itself, so when an object runs the 'new' subroutine, 'this.name = pinName' sets that pin's name to the

value of 'pinName'

A Pin object could then be created using the Pin class:

Pseudocode

templeMeads = new Pin("Bristol Temple Meads", [51.449760, -2.581080], "Train Station")

The Pin class defines the values associated with a Pin object (in this case, name, location and

markerType) and the subroutines that a Pin object can perform. The values associated with an object

are known as attributes, and the subroutines associated with an object are known as methods.

The new method is a constructor – a method that creates an object of a particular class with its own

attribute values. The process of creating an object from a class is known as instantiation, and an

object is known as an instance of a class. You can think of classes as blueprints, and objects as the

individual items created from those blueprints.

A class provides a template from which many objects can be created

Most attributes and methods are only relevant to a particular object. However, sometimes you may

want an attribute or method that is relevant to the class as a whole. These are known as static

attributes and static methods. For example, the Pin class could include a static attribute to count the

number of existing Pin objects:

Pseudocode:

class Pin

 private name

 private location

 private markerType

 public static noOfPins = 0 //Static attribute that belongs to the class

 public procedure new(pinName, pinLocation, pinMarker)

 this.name = pinName

 this.location = pinLocation

 this.markerType = pinMarker

 Pin.count = count + 1

 endprocedure

 ...

endclass

Notice that the static attribute is set using ‘Pin.count’ and not ‘this.count’ because the attribute belongs to the class and not just an object in the class.

Similarly, static methods are called by ‘ClassName.method()’ whereas non-static methods are called by ‘objectName.method()’.

If there is an attribute or method in a class that you may want to use even if there are no instances of

that class, it should be static.

Python Note:

In Python, non-static attributes are defined in the constructor and do not need to be declared

elsewhere in the class, so instead of writing a class as:

Pseudocode:

class Pin

 private name

 private location

 private markerType

 public static noOfPins = 0

 public procedure new(pinName, pinLocation, pinMarker)

 this.name = pinName

 this.location = pinLocation

 this.markerType = pinMarker

 Pin.noOfPins = Pin.noOfPins + 1

 endprocedure

 ...

endclass

...

pinObject = new Pin(name, location, marker)

It would be written as:

class Pin:

 public noOfPins = 0

 def __init__(self, pinName, pinLocation, pinMarker):

 self.__name = pinName

 self.__location = pinLocation

 self.__markerType = pinMarker

 Pin.noOfPins = Pin.noOfPins + 1

 ...

pinObject = Pin(name, location, marker)

Note that the static attribute noOfPins is still declared outside of the constructor method, but does not

require the ‘static’ keyword because any attribute written in the main body of the class is

automatically a static attribute.

The first parameter of any non-static Python method is the object itself (usually named 'self', although

you can give this any name you like and it will still work). While the method must declare this as a

parameter, you don't need to pass it when calling the method (note that the constructor is defined with

four parameters but only three parameters are passed when it is called).

Questions

Q1 Define the term programming paradigm. (1 mark)

Q2 Explain the difference between object-oriented programming and procedural

programming. (2 marks)

Q3 Explain the difference between a class and an object. (2 marks)

Q4 Identify a situation where a static method may be used. (1 mark)

Q5 Using pseudocode, write a class with relevant attributes and methods to represent a

digital clock object. It should represent the time as a 24-hour clock, and include

methods to create a new object, set the time manually, display the time, and update the

time at the end of each minute. (6 marks)

Task 1

This activity uses the following file:

▪ Task1.py

The Task 1 skeleton code is part of a program that allows a user to create a bank account,

login to their account, check their balance and deposit or withdraw money from their

account. It defines an Account class, that stores information about the individual bank

accounts, and a Bank class, that holds all of the bank accounts and performs operations on

individual accounts when asked to by the user.

Add the missing attributes and method logic to the Task 1 skeleton code to complete its

functionality. No changes should be made to main, no new methods should be defined, and

the parameters that the methods use should not be changed, deleted or added to. (15 marks)

	Introduction to object-oriented programming
	Objects and classes
	Questions

